1 月 10 日与旧金山的领导人一起度过一个独特的社交之夜、见解和对话。 在此请求邀请。
当 ChatGPT 一年前首次亮相时,互联网用户获得了一个随时可用的人工智能助手来聊天和工作。
它处理他们的日常任务,从生成自然语言内容(如论文)到审查和分析复杂信息。
聊天机器人的迅速崛起很快就吸引了全世界对其核心技术的关注:GPT 系列大型语言模型 (LLM)。
快进到今天,法学硕士(GPT 系列和其他)不仅是个人特定任务的驱动力,也是大规模业务运营的驱动力。
企业正在利用商业模型 API 和开源产品来自动执行重复性任务并提高关键功能的效率。
想象一下,与人工智能对话,为营销团队生成广告活动,或者能够通过在正确的时间显示正确的数据库来加速客户支持操作。
影响是深远的。
然而,法学硕士的作用没有得到太多讨论的一个领域是现代数据堆栈。
法学硕士改变数据堆栈
数据是高性能大型语言模型的关键。
当这些模型经过正确训练后,它们可以帮助团队处理数据——无论是进行实验还是运行复杂的分析。
VB事件
人工智能影响之旅
制定 AI 治理蓝图 – 请求 1 月 10 日活动的邀请。
了解更多
事实上,在过去的一年里,随着 ChatGPT 和竞争工具的发展,为企业提供数据工具的企业在其工作流程中循环生成人工智能,以使客户的工作变得更轻松。
这个想法很简单:利用语言模型的力量,让最终客户不仅在处理数据时获得更好的体验,而且还能够节省时间和资源——这最终将帮助他们专注于其他更紧迫的任务。
法学硕士的第一个(也可能是最重要的)转变发生在供应商开始推出对话式查询功能时,即通过与结构化数据(适合行和列的数据)对话来获取答案。
这消除了编写复杂 SQL(结构化查询语言)查询的麻烦,并为包括非技术用户在内的团队提供了易于使用的文本到 SQL 体验,他们可以输入自然语言提示并从他们的数据中获取见解。数据。
所使用的法学硕士将文本转换为 SQL,然后对目标数据集运行查询以生成答案。
While many vendors have launched this capability, some notable ones to make their move in the space were Databricks, Snowflake, Dremio, Kinetica and ThoughtSpot. Kinetica initially tapped ChatGPT for the task but now uses its own native LLM. Meanwhile, Snowflake offers two tools. One, a copilot that works as a conversational assistant for things like asking questions about data in plain text, writing SQL queries, refining queries and filtering down insights. The second is a Document AI tool to extract relevant information from unstructured datasets such as images and PDFs. Databricks also operates in this space with what it calls ‘LakehouseIQ’.
Notably, several startups have also come up in the same area, targeting the AI-based analytics domain. California-based DataGPT, for instance, sells a dedicated AI analyst for companies, one that runs thousands of queries in the lightning cache of its data store and gets results back in a conversational tone.
Beyond helping teams generate insights and answers from their data through text inputs, LLMs are also handling traditionally manual data management and the data efforts crucial to building a robust AI product.
In May, Intelligent Data Management Cloud (IDMC) provider Informatica debuted Claire GPT, a multi-LLM-based conversational AI tool that allows users to discover, interact with and manage their IDMC data assets with natural language inputs. It handles multiple jobs within the IDMC platform, including data discovery, data pipeline creation and editing, metadata exploration, data quality and relationships exploration, and data quality rule generation.
Then, to help teams build AI offerings, California-based Refuel AI provides a purpose-built large language model that helps with data labeling and enrichment tasks. A paper published in October 2023 also shows that LLMs can do a good job at removing noise from datasets, which is also a crucial step in building robust AI.
Other areas in data engineering where LLMs can come into play are data integration and orchestration. The models can essentially generate the code needed for both aspects, whether one has to convert diverse data types into a common format, connect to different data sources or query for YAML or Python code templates to construct Airflow DAGs.
It’s only been a year since LLMs started making waves and we are already seeing so many changes in the enterprise domain. As these models improve in 2024 and teams continue to innovate, we’ll see more applications of language models in different areas of the enterprise data stack, including the gradually developing space of data observability.
Monte Carlo, a known vendor in the category, has already launched Fix with AI, a tool that detects problems in the data pipeline and suggests the code to fix them. Acceldata, another player in the space, also recently acquired Bewgle to focus on LLM integration for data observability.
然而,随着这些应用程序的出现,对于团队来说,确保这些语言模型(无论是从头开始构建还是经过微调)能够正确执行也将变得比以往任何时候都更加重要。
此处或那里的轻微错误可能会影响下游结果,从而导致客户体验受损。
VentureBeat 的使命
是成为技术决策者获取有关变革性企业技术和交易知识的数字城镇广场。
了解我们的简报。
探险者们,你们错过了与#AlienWorlds首席工程师达拉斯约翰逊的对话吗?🪐第1部分:https://alienworldsio/blogs/alien-architect-a-conversation-with-d...
413月13日,现代物流集团党委副书记、副董事长、总经理廖辉、党委委员、副总经理张德钦、总会计师徐来杭州曲联科技有限公司调查.,考察区块链技术与外贸一体化的应用。服务平台建设。区块链 物联网 _区块链公司在物流行业_区块...
要理解加密货币如何帮助现代经济蓬勃发展,您必须首先了解它们在当今现代世界中的重要性。每个国家都从其经济和公民方面变得现代化和技术先进而受益这些数字资产的重要性正变得越来越广为人知。加密货币除了作为新的投资形式外,还有能...
报告期内,面对国际肥料产业格局的深刻变化,富邦股份抢抓机遇,通过积极创新、调整自身的经营策略,在市场开拓方面取得了显著成效,在非洲及东欧地区的市场占有率大幅提升。报告期内,富邦股份抢先在禾本科固氮微生物、节肥稳产、绿色种...